Automatic Brain Localization in Fetal MRI Using Superpixel Graphs

نویسندگان

  • Amir Alansary
  • Matthew C. H. Lee
  • Kevin Keraudren
  • Bernhard Kainz
  • Christina Malamateniou
  • Mary A. Rutherford
  • Joseph V. Hajnal
  • Ben Glocker
  • Daniel Rueckert
چکیده

Fetal MRI is emerging as an effective, non-invasive tool in prenatal diagnosis and pregnancy follow-up. However, there is a significant variability of the position and orientation of the fetus in the MR images. This makes these images more difficult to analyze and interpret compared to standard adult MR imaging, which standardized anatomical imaging aligned planes. We address this issue by automatic localization of the fetal anatomy, in particular, the brain which is a structure of interest for many fetal MRI studies. We first extract superpixels followed by the computation of a histogram of features for each superpixel using bag of words based on dense scale invariant feature transform (DSIFT) descriptors. We construct a graph of superpixels and train a random forest classifier to distinguish between brain and non-brain superpixels. The localization framework has been tested on 55 MR datasets at gestational ages between 20–38 weeks. The proposed method was evaluated using 5-fold cross validation achieving a 94.55% brain detection accuracy rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images

Fetal brain magnetic resonance imaging (MRI) is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal m...

متن کامل

Automated template-based brain localization and extraction for fetal brain MRI reconstruction

Most fetal brain MRI reconstruction algorithms rely only on brain tissue-relevant voxels of low-resolution (LR) images to enhance the quality of inter-slice motion correction and image reconstruction. Consequently the fetal brain needs to be localized and extracted as a first step, which is usually a laborious and time consuming manual or semi-automatic task. We have proposed in this work to us...

متن کامل

An Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors

Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...

متن کامل

Comparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei

Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015